

Project Presentation

Scalable/Secure Cooperative Algorithms and Framework for Extremely-high Penetration Solar Integration (SolarExPert)

University of Central Florida

Award # DE-EE0007998

May 16, 2019

Principal Investigator: Dr. Zhihua Qu

Other Contributors: NREL, HNEI, Duke, GE, Siemens, OPAL-RT

Milestone 1 – System Architecture

- Multi-Agent OpenDSS Platform
 - Basic version through EPRI OpenDSS: https://sourceforge.net/projects/electricdss/
 - Latest version: https://www.cs.ucf.edu/~qu/MA-OpenDSS.php

Milestone 1 – System Architecture

Multiple 100K-node test feeders

1. IEEE and EPRI systems

11K-node (IEEE

8500+EPRI Ckt 7)

2. NREL synthetic systems

+ urban/ suburban)

Milestone 1 – System Architecture

- Co-simulation of large-scale integrated T&D systems
 - Parallel implementation

Milestone 2 – Distributed Optimal Power Flow (DOPF)

- Three-phase unbalanced ACOPF is formulated with a branch flow model, and relaxed to a convex second-order cone program, and solved by the distributed primal-dual gradient method
- Formulated a chance-constrained OPF accounting for PV uncertainties
- Success Value: <1 min for real-time operation

11K-node test feeder with four clusters for the hierarchical DOPF implementation.

Voltage w/o control Voltage w/ default control Voltage w/ OPF control 0.80 1000 2000 3000 Node index on primary side Converge: ~100 iterations for voltage regulation

Time: ~100s on a laptop; ~40s if parallel computation is implemented for 4 clusters.

Controlled Voltage

4000

Milestone 3 – Distributed State Estimation (DDSSE)

- Online time-varying formulation and distributed online gradient algorithm for DDSSE are developed
- Success Value: accuracy <5% error, and convergence time <1-10 seconds

Converge: 7—8 iterations Time: **9.55 seconds**, which is about **10 times faster** than centrally coordinated state estimation

% of voltage	Ave. Error,	Ave. Max.
obser.	%	Error, %
3.6	0.45	2.3
7.2	0.45	2.2
14.5	0.42	2.0

Online DDSSE tracks the timevarying voltage magnitudes accurately

- Distributed cooperative subgradient-based algorithms for aggregate active power dispatch and autonomous reactive power control
- Cooperative voltage and frequency controls for islanded system
- Success Value: <30 seconds for the network level control

NREL synthetic 100k system simulation with large-scale 100% PV penetration:

Voltage of bus 's ncctt5756' on three cases

- 104 PVs among 12 feeders, totaling 122MW (100% penetration)
- Voltage control threshold is set as 0.03
- Under distributed voltage controls, the voltage profile is within the limits
- The highest inverter capacity is 108.6%, which are PVs in Feeder 30, cluster 167.

Same 100k system simulation with 100% PV penetration:

- At t=2s, the output of PVs increase from 0 to 100%
- Cooperative control on, voltage threshold is 0.03 pu

- Delay between clusters: 1.0 s
- Delay between nodes : 0.1 s

Frequency control in the islanding mode (IEEE 8500-node system):

Scenario setup:

- Circuit breaker open at the feeder
- A generator is supplying 1300kW at slack bus
- 12 large PV farms installed
- Regulators are fixed to pos. 0

Disturbance:

• At $t_0 = 0.6s$, a load at bus M1027043 decreases 1300kW

Frequency control:

- By cooperative control of PVs, both the frequency and power dispatch are maintained.
- The voltages are properly controlled.

Milestone 5 – Distributed Service Restoration (DSR)

- Developed the framework of centralized service restoration and reconfiguration, and the integrated T&D restoration
 - coordinates DERs and voltage control devices for bottom-up restoration
- Success Value: converge to centralized restoration benchmark

IEEE 123-Node, Normal Operation

IEEE 123-Node, Faulted Element-Reconfiguration

(One Tie switch is Open)

Milestone 6 – Real-time Simulation

- OPAL-RT has developed the real-time testing capability of 100K-node system
 - Consisting of IEEE 118-bus system and each of 40 buses connected with one ELV test feeder system
- Results comparison using MA-OpenDSS and OPAL-RT
 - IEEE 14-bus system and 40 ELV test systems aggregated at bus 11 of transmission system
- Success Value: within 0.5% error of voltage magnitude

OPAL-RT			OpenDSS		
V (p.u.)	P (kW)	Q (kVar)	V (p.u.)	P (kW)	Q (kVar)
1.0569	2334	757.6	1.059	2403.57	791.54

Milestone 7 – Verification

- Maui Meadow test feeder
 - Combined measurement data and synthesized values for model conversion from DEW to OpenDSS
 - Test and evaluate the distributed voltage control algorithm

Milestone 7 – Verification

• Data: The PV and load data are from July 06, 2017, 11:15:00 AM. The total load is 1,268 kW, and the total PV output is 1,454 kW (PV penetration = 115%).

Scenarios	LTC	Load Level	Voltage Range [p.u.]	Voltage Range [p.u.]	Voltage Range [p.u.]
	Tap ratio		Without PV	With PV	With Voltage Control
Base Case	1.0	1.0	[0.958, 1.000]	[0.988, 1.020]	[0.987, 1.016]
Case 1	1.05	1.0	[1.011, 1.050]	[1.038, 1.069]	[0.982, 1.049]
Case 2	1.0	0.5	[0.980, 1.000]	[0.995, 1.032]	[0.990, 1.018]
Case 3	1.05	0.5	[1.031, 1.050]	[1.046, 1.080]	[0.980, 1.049]

The Worst Scenario (Voltage profiles of case 3): (a) without PV generation units installed; (b) with PV penetration; (c) with the voltage control algorithm

Project Performance

Project Outcomes and Products

The Open-source MA-OpenDSS Platform

Autonomous clustering

Cooperative controls

T&D cosimulation Islanded microgrid with many PVs and one synchronous machine

Distributed Algorithms for ADMS Integration

On-line state estimation

Stochastic OPF

Cooperative P/Q controls

Demand response

Restoration & reconfiguration

Control-enabled
Dynamic Solar Hosting
Allowance (DSHA)

P and Q controls, hosting capacity & impact Grid-edge Situational Awareness

Enhanced observability by voltage inference

Questions?

